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The ray method is used to solve the boundary-value problems that lead to the propagation of 

two-dimensional shock waves in anisotropic plates of constant thickness, taking into account rotatory 

inertia and transverse shear deformations, as well as the coupling of extensional and transverse vibrational 

modes. The essence of the method is to construct the solution beyond the shock wave fronts by using ray 

series similar to Taylor series. Transient two-dimensional wave propagation in semi-infinite AT-cut quartz 

plates is studied. 

INTRODUCTION 

TRANSIENT wave propagation in an anisotropic plate was the main topic discussed in [l]. The 
dynamical behaviour of elastic anisotropic plates taking into account rotatory inertia and transverse 
shear deformations was considered in [2-4]. In particular, differential equations were derived in [2] 
for the coupled extensional and transverse vibrational modes of an anisotropic plate of constant 
thickness. These take the form of two subsystems: the equations of a generalized plane strained 
state and equations of the Timoshenko type. However, to solve problems of the vibrations of such 
plates, one introduces simplifying assumptions which uncouple the two subsystems. 

1. THE RAY METHOD 

The stress-strain state of a thin AT-cut quartz plate, taking into account transverse shear 
deformations and rotatory inertia, as well as the coupling of extensional and transverse vibrational 
modes, is described by a system of equations which may be found in [2]. 

Let us assume that some dynamical excitation applied at the boundary of the plate 
y = x1 vl +x31r3 = 0, where v = cos(p, v3 = sinrp are the components of the normal vector to the 
boundary, induces the formation of strong surfaces of discontinuity in the plate, each a cylindrical 
surface J’(t) with directrix L(t) in the plane of the plate xl, x3 and generators parallel to the x2 axis. 
Beyond the surface S(t) the desired functions 2(x1, x3, t) are expanded in ray series [5] 
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(1.1) 

where [Z,,,,] are the jumps of the kth derivative of t with respect to time 2(x,, x2, t) across the 
shock wave front, G the normal velocity of the wave, y is the distance measured from the plate 
boundary along the normal to the boundary and H(t) is the Heaviside unit step function. 

To determine the coefficients of the ray series (l.l), we differentiate the transport equations of 
the system (see [2]) k times with respect to t, differentiate the relationship between the force factors 
and displacements k + 1 times, and evaluate their difference across the wave surface S(t). The result 
is 

IN,, (ktql 

IN,, tlt+l) I 

to,, fktl)l = 
K? 3,(kfdI = 2% {K,cf, ht(k)f + K3534 b3,:(k)l + E','-c,, (b&:(k)l $ 

+ [@37(k)])) 

[~~a,(ktl) 1 = 2/3b3 (~,a IQ id(k)] + Ya3 @,,:,k)l), a = 1, 3 

[Mb, (kid = '/3b3\y5.5 ([@3,l(k)l + f@i,,,k,l) 

Here Nr , A$ and Ns are the forces acting in the plane of the plate, Qr and Qs are the shear forces, 
MI and MjM3 are the bending moments, Ms is the twisting moment, 2b is the plate thickness, p is the 
density, vl, v2 and v3 are the displacement velocities @r and a3 are the rotatory angular velocities of 
the normal to the middle surface of the plate and cP4 are the moduli of a quartz crystal; an index 
following a comma indicates differentiation with respect to the appropriate variable. 

In the sequel we shall use the summation convention with respect to repeated indices not in 
parentheses; unless otherwise stated, Latin indices take the values 1,2,3 and Grek indices take the 
values 1, 2. 

Using the compatibility relations for discontinuities of the kth derivative of 2(x,, x2, t) [6] 

G [zsNd = - [z,(k+d “a + 
cd [Z,tk,l 

dt %z + G iz, (k&s% (a = 1,3) 

we transform Eqs (1.2), to obtain 



726 Yu. A. ROSSIKHIN and M. V. SHITKOVA 

(1.3) 

qf,), = Xi(k) z!f), Xl(k) = h,(k)], X2(k) = b&(k)], &(k) = b,,(k)] 

y[;,’ =: y I(?*) cc(k) a , y l(k) = [@l,(k)], Yz(k) = [@3,(k), 

Pit = 2 (C,WI + CFi5%v3)* Pi2 = P2i = @,3 -t- CMhY3 + .63yJ 

Pi3 = P3i = W,~i, + ~ICsJ(~l~3 + Z3Yi), P22 y-= 2 @,,a,Y, + h.%‘Vlf 

P23 = P32 = 2 (RICBI%Yi + ~3~3*~3~3), p33 = 2 t~,2c~~~*~* + ~32~*~~3~3) 

4, = &%~3, 4, = &%VI, d,, = Ri2C66Yi, 4, = Ir’,c,*vi 

d22 = K,E,,v,, d,, = K3’?44~3, d,,* = -3b-2d,ivtv8-f, di, * = -3b-2d,iv1-1v3 

The quantities qup* are derived from pup b y replacing &,, (m, n = 1,3) in the latter by -rmn and css 
by ys5, 1 = x271 +x373 (T* = - sin cp, 73 = coscp) is the distance measured from the origin along the 
wave surface, PC&, , PG&~ are the principal values and li (f) , Zp*) the unit principal directions of 
the symmetric tensors sii = zpii / Tg_,I, s,& = Bp& 78_s 1 (6 = 1,3), respectively; the tensors sir, S,+, are 
obtained from fii, s& by replacing u8 in the latter by T& (6 = X,2); finally, d13*, d23*, d22*, d2, * are 
derived from the ~o~esponding asterisk-free quantities by multiplying the latter by -3b-‘. 

Confining our attention from now on to three terms of the radial series (1.1) for the unknown 
functions, we put k = 0, 1,2 in Eqs (1.3) to obtain 
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Here the first superscript in parentheses indicates the mode number (the first three modes are 
numbered 1, 2, 3 and the fourth and fifth l*, 2*), and the second indicates the specific projection; 
h’(‘k’, , h$), hi3, (k = 0, 1,2) are arbitrary functions of z = 1 -gCf)t, and h# , h,$;) (k = 0, 1, 2) 

are arbitrary unctions of z* = f’ 1 -g(,*) t (for convenience, the indices of z have been omitted in the 
formulae); the functions II$)J’, M[,$?) (k = 0. l), M[;j”’ , x[(j” and x&*,~) , which depend on 
the aforementioned arbitrary functions and their derivatives with respect to z, will not be given 
here, as their expressions are rather cumbersome 

pijl$wn) 
g(n) = 2pc(n)J 1 g(v*) = pap a 

* &v*) y*) 

2pGw*) 
(1.5) 

Using (1.4) we can construct a solution in the form of a ray series (1.1) with a suitable Heaviside 
function, for each of the five shock-wave modes. As the problem is linear, the final result is obtained 
by simply adding together the ray series thus constructed. The five sets of arbitrary functions 
appearing in the solution are determined by five boundary conditions. We will consider several 
types of boundary conditions. 

Let us assume first that three quantities are specified at the edge of the plate: the deformation 
velocity and two rotatory angular velocities of the normal to the middle surface of the plate, as 
functions of the time t and cordinate 1, i.e. 

This yields the following relations for determining the arbitrary functions: 

; hg,*‘Br’ = ykCo) 
cc=1 
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(1.6) 

In each system of equations the index N will take the values rz, r,3, and the index M, the values II, 
T and moreover 

& ca*) zzz p*)$$ + z$*)y,, B@*) ~ = zp*)q + zp*)z, 

If we assume that the quantities specified at the plate edge are the forces N,, , Nn7 in the plane of 
the plate, the shear force Q,, the bending and twisting moments M, , M,, , then we can derive a 
system of equations similar to (6) for the arbitrary functions. When that is done the right-hand sides 
of the equations will involve, instead of X&,, , Ykckj (k = 0, 1, 2), the functions N&j, M&,, 
defined on the boundary (NE,,, , Nvckj are the coefficients of the Maclaurin series of the boundary 
forces in the pane of the plate, N$kj are the same for the boundary shear force, and M&, , Mvckj are 
the same for the boundary bending and twisting moments, respectively). 

Boundary conditions of other types may be treated in an analogous fashion. 

2. EXAMPLE 

The above formulae will now be used to investigate the dependence on the angle cp of the propagation 
velocities of the strong discontinuity surfaces CC,,, Cc.,*) and of the velocities g(,), g(,*) at which the 
perturbations propagate along the wave surfaces. Figures 1 and 2 illustrate these magnitudes, in nondimension- 
al form, in polar coordinates (curves 1,2,3 in Fig. la represent the velocities CC,), Gc2), c(3) and curves 1.2 in 
Fig. lb, the velocities C?(t*), c;(2*j). For reasons of symmetry Fig. 1 shows only the upper parts of the curves 
and Fig. 2 the right-hand parts; it should be understood that on reflection in the vertical axis the solid curves in 

FIG. 1. 



Transient wave processes in an elastic layer 729 

FIG. 2. 

Fig. 2 become dashed curves and vice versa. All the velocities G(i), Cc,*, are given in units of the least velocity 
along the direction of the X, axis and all velocities go), g(,*) are given in units of the least velocity in the 
direction of propagation cp = SO“. 

It is clear from a comparison of the curves that the extremal values of the velocities C?;(,+, C?cv*) correspond to 
vanishing velocities EC,,), g(,*) ; moreover, the quantities &,,) , g(,*) change sign as they go through zero (the solid 
curves in Fig. 2a-e represent positive values and the dashed curves negative values), i.e. the radial tubes may 
deviate from the normal in either direction, depending on the direction in which the wave surface is 
propagating. 

As examples of the solution of boundary-value problems, let us consider the propagation of plane waves in a 
quartz plate in the direction cp = O”, triggered by a shock impulse of type (1.6), when all the quantities X0,(,) , 

C(k) except XO,co , YO,coj 
A shock of the B 

vanish or when all the quantities NC(,) , A4cckj except N$,) , M$,) vanish. 
rst type in the direction cp = 0” gives rise to five wave modes, propagating at velocities 

G(1) > Ccl*) > G(2) > G(J) (numbered in decreasing order of magnitude). In the first mode v1 experiences a 
discontinuity, but @ is continuous together with its first derivative, and the second derivative of (P3 with respect 
to x1 also has a jump. In the second mode @I experiences a discontinuity, as do the first derivative of v1 and the 
second derivatives of v2, v3. In the third mode the first derivatives of QI, ~2, v3 and the second derivative of vI 
are discontinuous, in the fourth--the first derivatives of v1 and m.3, and in the fifth--the first derivatives of @I) 
v2, v3 and the second derivative of vI . Numerical analysis of the solution with boundary conditions of the first 
type shows that the fourth mode does not make a significant contribution to determining the deformation 
velocities and its rotatory angular velocities may be ignored. 

To illustrate, Fig. 3 shows the nondimensional deformation velocities and rotatory angular velocities (the 
former in units of the initial velocity X0 and the latter in units of Y,,) for an A-cut quartz plate of thickness 
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FIG. 3. 

2b = 2 mm at r = tYo = 1, plotted against 

Curves l-5 represent Pi, Q1, P3, Qs, P2, respectively. Along the interval from 0 to 0.53 all five modes 
contribute to the solution; from 0.53 to 0.76-the first four, from 0.76 to 0.86-the first three, from 0.86 to 
0.96-the first two, and from 0.96 to l.OO-the first wave only. 

If the initial shock is of the second type, the nature of each of the five modes changes as follows. In the first 
mode the first derivative of v1 and second derivatives of @i and @3 experience discontinuities; in the second, the 
first derivative of @i and second derivatives of v2 and v3 are discontinuous, in the third-v* and v3 and the first 
derivative of @i , in the fourth--$, the first derivative of vi and the second derivative of @i, and in the 
fifth-v2 and v3 and the first derivative of Qi . Analysis of computed data in this case imply that the first and 
second modes do not significantly affect the values of the deformation velocities and rotatory angular velocities 
and their contribution to the solution may be ignored. Curves of the nondimensional quantities are plotted in 
Fig. 4. 

In conclusion, let us compute the ray velocities GLcnj, GLca*) of strong discontinuity modes (the velocities at 
which the perturbations travel along the ray), construct the ray velocity curves, compare them with the 
corresponding phase velocity curves G,,, , Gc,.) (Fig. la, b) and, in addition, determine the angles yen), ?(a*) 
that characterize the deviation of the rays from the wave normals. As already mentioned, the extrema of the 
phase velocities Gc,,) , Gc,*) are the zeros of the velocities g(,) , g(,*) at which the perturbations travel along the 
appropriate wave fronts. This suggests that g(,) , g(,*) are the derivatives with respect to cp of the phase velocities 

G,,, 3 G(ay. Indeed, if we differentiate the expression 
sijl,(“)lj(“) = pGtRj 

with respect to cp and use the fact that Sijli(n)lj(m) = 0 if n + M, this gives 

G(~),, = 'ij,cp 1 Z,(n)lj(“) (ZpG(n))-l 
(2.1) 
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FIG. 4. 

Since Sij = fpijIT_=vo and SO Sij,q =pij, it follows that formula (2.1) is just formula (1.5) for g(,), i.e. 
Cc,),, = g(,) . Similar reasoning yields Gca*),p = g(,*) . 

To determine the location of the perturbation at any fixed instant of time, we must eliminate the parameter cp 
from the system of equations 

F (XI, x3, cp) = zlvl + xQv3 - Gt = 0 

F, (~1, IQ, cp) = 2171 + x3’63 - gt = 0 (2.2) 

For convenience, we have omitted the index of the mode number. 
Since g = G,, , we have Fr (x1, x3, ‘p) = F,,(xl , x3, cp), i.e. the ray velocity curves are the envelopes of the 

wave fronts of plane waves radiating at a certain time from a point source placed at the origin [7]. 
Equations (2.2) yield the equations of the ray velocity surfaces in polar notation 

p = I/z,” + x2 = GLt, GL = I/G” + g2 (2.3) 

and expressions for the angles 

cos y = GGE’, sin y = gGil (2.4) 

describing the deviation of the rays from the wave normal. 
Figure 5 shows the ray velocity curves for the five plane modes, determined by formula (2.2) (in view of 

symmetry only the upper parts of the curves are shown). 

FIG. 5. 
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FIG. 6. 

Obviously, smooth wave fronts are observed for only two modes-quasi-extensional (the first mode) and 
quasi-extensional rotatory (the second). In quasi-transverse (third and fifth) and quasi-transverse rotatory 
(fourth) modes the wave fronts contain lacunae: the third and fourth modes have two lacunae each, 
symmetrically located with respect to the xi axis, and the fifth has six lacunae, two of which lie on the x3 axis 
and four are symmetrically located with respect to the origin, on straight lines at angles +35” 15’ to the xi axis 
(the lacunae are not symmetrical about the straight lines). We observe that the AT-cut is also inclined to the 
crystallographic axis at an angle of 35” 15’. The ray L may intersect the wave surface at five, seven or nine 
points, i.e. along a ray in an AT-cut quartz plate up to nine elastic modes of different velocities may propagate, 
two of which are quasi-extensional and the others quasi-transverse. 

In Fig. 6 the angles of deviation y of the rays from the wave normal are plotted against the inclination cp of the 
wave normal to the x1 axis, as obtained from (2.4). 

A glance at the figure shows that all the curves except the third have two extrema and cut the cp axis at three 
points (the third curve has three extrema and four points of intersection with the cp axis). In other words, the 
rays deviate most from the normal in two directions (for the fifth mode-in three directions) and coincide with 
the wave normal in three directions (for the fifth mode-in four), two of which are the directions of the xi, x3 
axes. 
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